On the Iterative Multivalued ⊥-Preserving Mappings and an Application to Fractional Differential Equation
نویسندگان
چکیده
In this paper, we introduce orthogonal multivalued contractions, which are based on the recently introduced notion of orthogonality in metric spaces. We construct numerous fixed point theorems for these contractions. show how aid generalization a number published findings. Additionally, offer theorem that establishes existence fractional differential equation’s solution.
منابع مشابه
Brenstien polynomials and its application to fractional differential equation
The paper is devoted to the study of Brenstien Polynomials and development of some new operational matrices of fractional order integrations and derivatives. The operational matrices are used to convert fractional order differential equations to systems of algebraic equations. A simple scheme yielding accurate approximate solutions of the couple systems for fractional differential equations is ...
متن کاملbrenstien polynomials and its application to fractional differential equation
the paper is devoted to the study of brenstien polynomials and development of some new operational matrices of fractional order integrations and derivatives. the operational matrices are used to convert fractional order differential equations to systems of algebraic equations. a simple scheme yielding accurate approximate solutions of the couple systems for fractional differential equations is ...
متن کاملAn exponential spline for solving the fractional riccati differential equation
In this Article, proposes an approximation for the solution of the Riccati equation based on the use of exponential spline functions. Then the exponential spline equations are obtained and the differential equation of the fractional Riccati is discretized. The effect of performing this mathematical operation is obtained from an algebraic system of equations. To illustrate the benefits of the me...
متن کاملApplication of differential transformation method to the fisher equation.
In this paper, the dierential transform method (DTM) is applied to the Fisherequation. This method can be used to obtain the exact solutions of Fisherequation. Finally, we give some examples to illustrate the suciency of themethod for solving such nonlinear partial dierential equations. These resultsshow that this technique is easy to apply.
متن کاملApplication of fractional-order Bernoulli functions for solving fractional Riccati differential equation
In this paper, a new numerical method for solving the fractional Riccati differential equation is presented. The fractional derivatives are described in the Caputo sense. The method is based upon fractional-order Bernoulli functions approximations. First, the fractional-order Bernoulli functions and their properties are presented. Then, an operational matrix of fractional order integration...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Axioms
سال: 2023
ISSN: ['2075-1680']
DOI: https://doi.org/10.3390/axioms12010053